œ

Efforts for Next Generations Reactor Systems Development in the World

1 – Renewed interest in sustainable nuclear energy systems
2 – Generation IV International Forum and IAEA INPRO Initiatives
3 – R&D on Fast neutron Reactors & closed fuel cycles
4 – R&D on High Temperature Reactors & non-electricity applications
5 – Scientific challenges and perspectives for industrial deployment

Frank Carré

franck.carre@cea.fr

CEA – Nuclear Energy Division

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy Tsuruga – September 10-14, 2007

1

Sustainable energy development scenario (IAE - 2003)

Nuclear Energy Division

ENERGY TO 2050

Future

Tsuruga Summer Institute on Nuclear Energy Tsuruga – September 10-14, 2007

2

Generations of Nuclear Power Systems

Sustainable Nuclear Fission Technology Platform (SNF-TP)

SNF-TP objectives & organization

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 4 Tsuruga – September 10-14, 2007

Sustainability

— > Resource utilization (t Unat/GWy)

> Ultimate waste form

- ✓ Direct disposal of Spent Nuclear Fuel
- ✓ Vitrified waste package
 - Fission products + Minor actinides
 - Fission products only ?

Economic competitiveness

✓ Generating cost (€/MWh)

- Investment, Operating costs, Fuel cycle costs

- Safety + Security
 - ✓ Safety
 - Physical protection
 - Proliferation resistance

Integration in the socio-economic context

✓ Acceptation

✓ Social and economic impact

Nuclear Energy Division

5

Radiotoxicity and decay heat of TRU in spent fuel

>1st contributor : Pu

>2nd contributor : Minor Actinides (MA): Am, Cm ?, Np ??

Guidelines to optimize the management of nuclear spent fuel and waste: design of repository and environmental impact

LL Fission Products: P/T feasible but not very efficient for ⁹⁹Tc and non practically feasible for ¹³⁵Cs & ¹²⁹I

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 6 Tsuruga – September 10-14, 2007

Fast neutron reactors burn plutonium while converting U 238 (U dep & U rep) into plutonium that is burnt in situ (~1 t U/GWey) (Regeneration → Breeding of fissile fuel)

→ Existing Plutonium & Depleted Uranium in nuclear countries is worth ~5000 years of current nuclear production.

The Red Book 2005: Resources, Production and Supply 21st Edition by OECD/NEA (June 1, 2006)

MtU	<130\$/kg	Phosphates
RAR	3.3	
EAR-I	1.4	
Total	4.7	
EAR-II	14.8	22
SR		
Total	19.5	22

Uranium demand for the expected growth of nuclear power: 370 GWe LWR \rightarrow 1000-1300 GWe LWR by 2050 with 60y lifetime \rightarrow Need for 1,2 + 11/14.5 Mt Unat

→ Incentive to switch around 2050 to Fast neutron Systems that make a much more efficient use of Uranium than LWRs

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy Tsuruga – September 10-14, 2007

Uranium Demand & Supply

Demand > Supply

→ Additional resources (WPu, U_{rep}, MOX) used so far

Annual demand and supply of Uranium (1945 \rightarrow 2003)

Production annuelle d'uranium et besoins liés aux réacteurs (1945-2003)

9

If nuclear energy grows significantly, uranium resources could be engaged by 2050

Nuclear Energy Division

NEA Source 2006

Tsuruga Summer Institute on Nuclear Energy Tsuruga – September 10-14, 2007

The GNEP Initiative Nuclear fuel supply & take back **Reactor States** National Law Repository Reactors Enriched Spent Thermal Fuel Uranium Reactor Fuel ORE Separate Repository Recycle Fast Fuel Reactor 貫 Fuel cycle States

Recognizes the benefit of treatment/recycling strategies:

- **Regional centers**
- Large scale facilities

Sets new requirements for future reprocessing needs:

- Address non-proliferation
- No pure plutonium

Tsuruga Summer Institute on Nuclear Energy 12 Tsuruga – September 10-14, 2007

Experience in Sodium cooled Fast Reactors

18 experimental or prototype Sodium Fast Reactors so far 385 Reactor x Years of cumulated operation in 2007

United States

- EBR-1 1951
- EBR-II (20 MWe) 1963 → 1994
- FFTF (400 MWth) 1980 → 2000
- Clinch River Project cancelled in 1983

Europe

- Rapsodie (20 MWth) 1967 → 1983
- DDFR (60 MWth)
- KNK-II (17 MWe) 1978 → 1991
- Phénix (250 MWe) 1973 → 2009
- PFR (250 MWe) 1975 → 1994
- SNR300 (300 MWe) never put into service
- Superphenix (1200 MWe) 1986 → 1998
- EFR Project cancelled in 1998

	Japan Joyo (140 MWth) Monju (280 MWe)	1994 ->
1983 3	 Russia & Kazakh BOR-60 (60 MWth) BN-350 (90 MWe) BN-600 (600 MWe) BN-800 (800 MWe) 	stan 1973 → 1999 1980 → 2012
	India - FBTR (40 MWth) - PFBR (500 MWe)	1985 → 2010
service 1998	China - CEFR (25 MWe)	2010

ga Summer Institute on Nuclear Energy *Tsuruga – September 10-14, 2007*

Gen IV Vision of closed fuel cycle: integral & homogeneous recycling of actinides

Generation IV Forum: selection of six nuclear systems

Tsuruga – September 10-14, 2007

Governance of the Generation IV Forum

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy Tsuruga – September 10-14, 2007

18

Generation IV System selection

Status of the Generation IV International Forum

- Framework Agreement:
- Signed on Feb. 28, 2005 in Washington D.C.

- > System Arrangements:
- Feb. 15, 2006: SFR Arrangement signed
- Nov. 30, 2006: VHTR, GFR & SCWR Arrangements signed

Project Arrangements:

- March 2007: Signature of the SFR Advanced fuel Project
 SFR GACID & VHTR Materials, Fuel and fuel cycle, Hydrogen production to be signed by Dec.2007
- Russia & China join the Forum: Charter signed Nov. 30, 2006
- J. Bouchard as Forum's Chairman for 3 years (Nov. 2006-09)

INPRO: an initiative to specify and assess nuclear systems for IAEA member countries

<u>INPRO</u>: A unique forum for the development of nuclear energy in IAEA affiliated countries & strengthening cooperation between **Technology "Holders" & "Users**"

Sodium Fast Reactor (SFR)

- A new generation of sodium cooled Fast Reactors
- Reduced investment cost Simplified design, system innovations (Pool/Loop design, ISIR – SC CO₂ PCS)
- Towards more passive safety features
 + Better manag^t of severe accidents
- Integral recycling of actinides?
 Remote fabrication of TRU fuel

→ 2009: Feasibility – 2015: Performance → 2020+ : Demo SFR (FR, US, JP...)

A prototype reactor in France in 2020

President Chirac statement (Jan 06):

« A number of countries are working on future generation reactors, to become operational in 2030-2040, which will produce less waste and will make a better use of fissile materials. I have decided to launch, starting today, the design work by CEA of a prototype of the 4th generation reactor, which will be commissioned in 2020. We will naturally welcome industrial or international partners

who would like to get involved. »

Bill on a long-lasting sustainable management of radioactive materials and waste (June 28, 2006):

<u>Section 3.1</u>: « Research on Partitioning and Transmutation is conducted in relation with that on **new generations of nuclear reactors** mentioned in the Energy Policy Bill of July 13, 2005, as well as on **accelerator driven systems** dedicated to the transmutation of waste, so as **to have in 2012 an assessment of the industrial prospects of these reactor types** and to put a prototype into operation by the end of 2020 ».

Requirements for Gen IV Sodium Fast Reactors (1/2)

Economic competitiveness with Gen III LWRs

- Reduction of the *investment cost* through system simplification and increase of compactness
 - Pool concept
 - Loop system (with simplified or suppressed intermediate system)
- Optimization of operation with a design that alleviates as far as possible constraints associated with a metallic coolant
- Optimization of *in service inspection, maintenance and repair*

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 25 Tsuruga – September 10-14, 2007

Requirements for Gen IV Sodium Fast Reactors (2/2)

Enhanced safety

- Decrease or suppression of *risks of sodium/water interaction* through optimizing the Power Conversion System
 - Optimized Steam Generator
 - Gas Turbine (nitrogen/helium or supercritical CO₂)
- Practical exclusion of large energy release in case of severe accidents
 - → Reduced sodium void reactivity effect + Enhanced Doppler effect with a dense and high thermal conductivity fuel + Increased reliance on passive safety features

Flexible fuel cycle (U, Pu, MA) + Burning or Breeding > Resource saving > Waste minimization > Non-proliferation

Develop international non-proliferation standards to allow for diverse fuel cycle processes

Keep all options open as they could be deployed in sequence

TRU fuel tests in Phenix & Superphenix

R&D on spent fuel separation processes

Tsuruga Summer Institute on Nuclear Energy 30 Tsuruga – September 10-14, 2007

Co-conversion of actinides through the solgel process

Beads of U(VI)-Pu(IV) hydroxide gel

Oxalic co-precipitation of actinides

French Prototype 2020 and related fuel cycle facilities

Demonstration of Advanced reactor and recycling technologies (U, Pu, MA)

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy Tsuruga – September 10-14, 2007

32

Minimizing waste with advanced Actinide recycling

Summary of main results of NEA P&T study (ENC 2005)

Gen IV and P&T impacts

1a: Once-through cycle as reference.

1b: *full LWR park, Pu re-used once*

2a: full LWR park, multiple re-use of Pu

3cV1: *full fast reactor park and fully closed fuel cycle (Gen IV).*

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 34 Tsuruga – September 10-14, 2007

ETDR and GFR pre-conceptual designs (GFR)

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy36Tsuruga – September 10-14, 2007

✓ System Arrangement LFR to be signed end-2007 or 2008

Lead Fast Reactor (LFR)

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 37 Tsuruga – September 10-14, 2007

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 38 Tsuruga – September 10-14, 2007

Very High Temperature Reactor (V/HTR)

A nuclear system dedicated to the production of high temperature process heat for the industry and hydrogen

temperature

steam

Power to grid

ser for electrolysic

- 600 MWth T_{He} >1000 °C Thermal neutrons Block or pebble core concept
- Passive safety features
- I-S Cycle or HT Electrolysis for H₂

→ 2009: Feasibility – 2015: Performance
 ~ 2020: PBMR, NGNP & Other Near Term Projects

ANTARES: a multipurpose nuclear heat source for hydrogen and process heat production High Temp. Primary **Process** A-HTR Loop Heat ~550 to 800C **ANTARES** 600 MWt Gas PROJECT IHX Rx core Cycle Circulator He He or N₂/He Gas Water/steam turbine S.G. Med. Temp. **Process Heat** ~250 to 550C Steam Cycle Low Temp. Condenser **Process Heat** Generator ~30 to 250C **ANTARES** concept (600 MWt, 850°C)

Nuclear Energy Division

R&D on VHTR fuel manufacturing

GAIA fabrication line (CEA Cadarache) (under operation since mid 2005)

Sol-Gel apparatus Kernel manufacturing Nuclear Energy Division

UO₂ kernels

ZrO₂ TRISO SiC particle

Drying calcination furnace

CVD line

TRISO particle coating

Tsuruga Summer Institute on Nuclear Energy 41 Tsuruga – September 10-14, 2007

R&D on helium technology and components

Electric network **Dynamic He tightness** Generator systems Thermal insulation systems Turbine for hot gas pipe Core vessel helium 550°C 35 bar 1000°C 80 bar He components (heat exchangers, cooler, circulator, valves) Economizer 500°C Graphite oxidation in 80 bar HTR reactor core 150°C 80 bar 150°C 35 bar Control rods Cooler 40°C, 35 bar He quality management Compressor He compressor/circulator **Mechanical behavior** of welded junctions Wear and friction (operability of CRDM) **Static He tightness**

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy42Tsuruga – September 10-14, 2007

Nuclear production of Hydrogen

R&D on two main processes

An important mile-stone in 2008 about feasibility and performances Many collaborations : Europe, Gen IV, USA, Japan

Very High Temperature Reactor (VHTR)

Potential applications of process heat for the industry

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 44 Tsuruga – September 10-14, 2007

Computational tools for current and future nuclear systems

Simulation: - Multi-physics, multi-scale modelling - Co-developed numerical platforms

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 45 Tsuruga – September 10-14, 2007

Simulation & Experimental Tools

Development of Nuclear experimental facilities

Research Reactors

- ✓ OSIRIS, ORPHEE, HFR, LVR-15...
- ✓ PHEBUS, CABRI
- ✓ EOLE, MINERVE, MASURCA
- Jules Horowitz Reactor -> 2014

> Hot laboratories ✓ LECI ✓ PE-LECI ✓ LECA-STAR ✓ ATALANTE...

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 46 Tsuruga – September 10-14, 2007

Strategic Techno for Sustainable Nuclear Systems (1/2)

Advanced spent fuel recycling processes

✓ <u>Stakes:</u> International non-proliferation standards

✓ <u>Status</u>: Experience of existing spent fuel treatment plant, R&D on advanced treatment processes, Pilot-scale demonstration facilities of these processes (~2017) to provide driver and experimental TRU fuels for the Fast Reactor Prototypes (> 2020)

Advanced fuels (incl. MA bearing fuels for Fast Reactors)

✓ <u>Stakes</u>: International non-proliferation standards

✓ <u>Status</u>: first tests of MA bearing fuels in Phenix, dynamic R&D, International demo of integral recycling in MONJU (GACID), Advanced recycling Demonstrations planned in Fast Reactor Prototypes (>2020)

Advanced materials for the core and reactor systems

- ✓ <u>Stakes</u>: techno breakthroughs for fast neutron & high temperature reactors
- ✓ <u>Status:</u> Active R&D on advanced steels (austenitic, ferritic/martensitic, ODS)

+ SiC_f-SiC & other composite ceramics: a synergistic R&D field with Fusion techno. *(key feasibility issues for the Gas Fast Reactor)*

Nuclear Energy Division

Strategic Technologies for Future Nuclear Systems (2/2)

Innovations for sodium & other Fast Reactors

✓ <u>Stakes:</u> innovations to advance sodium Fast Reactor systems and technologies beyond EFR, MONJU and the Indian PFBR (500 MWe)
 → Progress on 1 – Investment, 2 – Safety, 3 – Operation

✓ <u>Status</u>: experience derived from Phenix, Superphenix, BN600, FFTF... Current effort to select innovative design features by ~2012, to be demonstrated in Fast Reactor Prototypes or Technology Demonstrators (> 2020)

> Other innovations for nuclear systems (gas turbine power

conversion, co-generation of heat, hydrogen, synthetic hydrocarbon fuels...)

✓ <u>Stakes:</u> widening the range of nuclear applications; developing potential key technologies for future nuclear energy systems for the national and the international markets

✓ <u>Status:</u> medium term projects of V/HTRs (*PBMR, NGNP, GT-HTR300, PMR...*), dynamic R&D on V/HTR fuel, system technology, HT heat exchangers & power conversion, hydrogen technologies, production of synthetic fuel from coal or biomass...

Nuclear Energy Division

Nuclear Energy Division

Tsuruga Summer Institute on Nuclear Energy 49 Tsuruga – September 10-14, 2007

Next Generations Nuclear Systems International Development Summary and perspectives International cooperation on future nuclear systems (Gen IV, INPRO...):

- ✓ Fast Reactors & closed fuel cycles for sustainability, and
- ✓ High Temperature Reactors for co-generation (H_2 , Synfuels, Process heat)
- -> Updated goals: Competitiveness, Safety, Non-proliferation, Physical protection
- → A dual approach on Fast Neutron Systems: SFR + GFR, LFR...
- Development of V/HTRs by the industry (Customers & Vendors)
- Innovative concepts & technologies for LWRs (Fuels, Core, Systems)

Scientific challenges in MA-fuels, Recycling, Structural materials, System innovations (RCS, PCS...):

✓ Key role of Simulation and Large experimental facicilties (MTR, Hot Labs)
 ✓ Significance of international cooperation (R&D + Demos GACID...)

→ Demonstrations in Joyo/Monju, US-ARR, Prototypes FR-2020, JP-2025...

Towards a parallel & phased development of reactor & recycling technologies
 ✓ Federation of national initiatives into an international technology roadmap
 → Enhancing R&D and technology demonstrations (Gen IV, EU FP7...)
 → Progressing towards harmonized international standards (safety, PR & PP)

Nuclear Energy Division